Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition.
نویسندگان
چکیده
In this work, we investigated the use of a homogeneous Al-doped zinc oxide (AZO) buffer layer to improve the performance of an organic light-emitting diode (OLED) device fabricated on an AZO anode. For this, 10-nm-thick AZO buffer layers with Al doping concentrations of 3.1, 4.1, and 5.1 at % were grown on 140-nm-thick AZO anode films containing 2.1 at % Al by atomic layer deposition. The electrical resistivity of the AZO anode with a homogeneous AZO buffer layer decreased with an increase in Al doping concentration up to 4.1 at %; however, the resistivity increased at higher doping concentrations in the AZO buffer layer. On the other hand, the work functions of the AZO anode with the AZO buffer layer containing various Al doping concentrations gradually increased with an increase in Al doping concentration from 3.1 to 5.1 at %. Therefore, the best film properties were obtained for an AZO anode with an AZO buffer layer containing 4.1 at % Al, and the work function value for this film was 4.64 eV. The highest luminance and current efficiency values were optimized to be 20290 cd/m(2) and 13.4 cd/A, respectively, with the OLED device composed of a DNTPD/TAPC/Bebq2:10% doped RP-411/Bphen/LiF/Al structure on an AZO anode with an AZO buffer layer containing 4.1 at % Al.
منابع مشابه
Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer
In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film ...
متن کاملBlue light emission from the heterostructured ZnO/InGaN/GaN
ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a...
متن کاملAnalysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method
N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at 800 C for 5 minutes in ambient of O2 with pressure of 10 Torr. X-ray diffraction shows that the homobuffer layer is beneficial to the crystalline of N-doped ZnO thi...
متن کاملInverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution
The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to obtain the ZnO electron transport layer (ETL) at a low temperature in inverted organic solar cells (OSCs). However, to dope the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxid...
متن کاملAl-Doped ZnO Thin Film Transistors by Thermal Evaporation
In this paper, Al-doped ZnO thin film transistors (AZO-TFT) were fabricated by the thermal evaporation growth of AZO channel layer on a silicon substrate at temperatures below 250°C. A SiO2 dielectric layer grown by the horizontal furnace was used as a gate. An active layer thickness of 10nm was measured by Atomic Force Microscopy (AFM), and its surface had root mean square (rms) roughness 12.6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 5 9 شماره
صفحات -
تاریخ انتشار 2013